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Abstract: Molecular dynamics (MD) simulations were conducted to investigate the 

dependence of nano-confined surface condensation on tangentially external force filed. The 

dynamic behaviors of surface condensation were simulated on a smooth solid surface with 

fixed wettability (denoted by β) and different external force fields (denoted by fe), and on 

surfaces with different β and fixed fe. The heat transfer analysis shows that fe, as a bulk factor, 

indirectly influences the interfacial thermal resistance (R) by direct influence on surface 

condensation resulting from the viscous and frictional dissipated heats. This is because the 

dissipated heats result in superheat of the vapor, leading to the delay or elimination of onset of 

surface condensation. This finding extends the general understanding that R is only dependent 

on the interfacial factors, such as β and surface topology. The energy balance analysis shows 

that, for condensation cases, the largest proportion of the heat transferred through the fluid-

solid interface is attributed to the change in the internal energy, while for non-condensation 

cases, it is attributed to the dissipated heats due to fe. As fe increases or β decreases, the 

dissipated heats increase and gradually take over the total heat transferred from fluid to solid, 

which finally reduces or suppresses the occurrence of surface condensation. 

Keywords: Nano-confined surface condensation; Molecular dynamics simulation; 

External force field; Energy conversion analysis; Heat transfer 

1. Introduction 
The understanding of the physical behavior of nano-confined fluids has drawn much attention 

due to its potential applications such as in chemistry, nanomaterials, drug delivery, 
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nanoelectronic devices [1]-[5]. Phase change and fluid flow play important roles in these 

applications [6]. In nanoscale, surface effects dominate the flow and phase characteristics due 

to the large ratio of surface area to volume, leading to different mechanisms in comparison of 

those in macroscale [7]. Vapor condensation is a common physical phenomenon and appears 

two different modes, namely dropwise condensation (DWC) and filmwise condensation 

(FWC). The formation of initial droplet in DWC consists of three over-lapping stages i.e. the 

formation of clusters, generation of nuclei and emergence of nanoscale droplets. Molecular 

dynamics (MD) simulation has been widely used to investigate the insights into the phenomena 

of fluid flow and heat transfer in nanoscale. MD simulations [9]-[16] have demonstrated 

features during the onset, early and developed stages of surface condensation. In the case of 

condensation in a slit pore, the rate of nucleation is higher than that in the homogenous vapor 

at the same vapor density and temperature, irrespective of the strength of attraction between 

the wall and vapor molecules [9]. The nucleation is more likely to initiate on the high energy 

particles that embedded in a low energy surface and clusters do not migrate around their 

original positions [11]. It has also been found that there are two different types of formation of 

nanoscale droplet depending on the relative surface free energy, i.e. the formations with and 

without film-like condensate, which enriches the ‘classical hypotheses’ of the onset of 

dropwise condensation [14]. For the formation with film-like condensate case, a film-like 

condensate is formed firstly when the surface with relatively large wettability is cooled, then it 

contracts and ruptures into several nuclei and finally evolves into a large droplet. During 

condensation there exists a competition between the interfacial thermal resistance and 

condensate bulk thermal resistance [15]. At the onset of condensation, the interfacial thermal 

resistance takes over, while the condensate bulk thermal resistance gradually dominates with 

condensate thickness growing.  
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MD simulations have also been used to investigate the behavior of nano-confined fluid flow 

[17]-[20]. Their results show that the velocity slip and temperature jump at the solid-fluid 

interface are significant and the behavior of confined fluid can be largely controlled by 

appropriately modifying the boundary and bulk factors. Their results also show that in nano-

confined fluid flow the dissipated heat, resulting from viscous friction of fluid and interfacial 

friction at fluid-solid interface, is an important factor. In practice surface condensation occurs 

under external force filed and its effect needs to be taken into account, where fluid flow and 

heat transfer are coupled. MD simulations [21] investigated features of surface condensation 

under external force field but mainly focused on how the composite nano-surface to sustain 

and enhance condensation heat transfer as well as the enhancement mechanism from the 

thermal resistance point of view.  

So far no detailed investigations have been done on the surface condensation of nano-confined 

fluids under external force filed. In this work, we will investigate the effect of external force 

field on nano-confined surface condensation using MD simulation. Owing to the strong effects 

of nanoscale surfaces, the surface wettability is also taken into account. Moreover, attentions 

in MD simulations of condensation have been mainly paid to cluster analysis [22], formation 

free energy [23], computational strategies [24],[25], surface properties [11] and so on. In this 

work, we will quantitatively analyze the energy balance and look at the mechanism of the 

effects of external force filed from energy conversion point of view. Our work helps further 

understand the fundamental of practical nano-confined surface condensation and potentially 

offers a new way for artificial control and enhancement of surface condensation. 

2. Computational methods 

The surface condensation with external force field is of concern in the present work using MD 

simulation (see Fig. 1). All the simulations are conducted using LAMMPS [26] (large-scale 

atomic/molecular massively parallel simulator) software package. The overall size of 



4 

 

simulation box measures lx × ly × lz = 588.45 × 39.23 × 470.76 Å. Owing to symmetry, this 

simulation domain is just half of the nanochannel. Therefore, in the y and z directions, periodic 

boundary conditions are used, while in the x direction, fixed boundary condition is employed 

and reflection boundary condition is also applied at the rightmost end. The solid wall 

constructed by Pt-like atoms is arranged on the leftmost region of the simulation box and the 

rest region is occupied by the Lennard-Jones (L-J) fluid of Ar. The 12-6 L-J potential function 

is employed for fluid-fluid interaction: 
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where r is the intermolecular separation, ɛ and σ are the energy and length characteristic 

parameters, respectively. The potential function is truncated at the cut-off radius rc = 3.5σ, 

beyond which molecular interactions are ignored. ɛAr-Ar = 0.01040 eV and σAr-Ar = 3.405 Å are 

used. The solid wall is represented by three layers of Pt-like atoms arranged as a face-centered 

cubic (FCC) lattice and the length of the unit cell is 3.926 Å. Two extra layers of Pt-like atoms 

are fixed on the leftmost region of the solid wall to serve as a frame. The interaction between 

solid atoms is L-J type only with ɛPt-Pt = 0.521875 eV and σPt-Pt = 2.475 Å. The fluid-solid 

interaction is also governed by Eq. (1) but with different energy and length parameters, i.e. ɛAr-

Pt = βɛAr-Ar and σAr-Pt = 0.91σAr-Ar, where β is fluid-solid bonding strength parameter indicating 

the surface free energy, or equivalently the surface wettability, because normally higher surface 

free energy suggests stronger surface wettability. All the simulations are performed in three 

stages with a time step of 5 fs. In stage 1 (equilibrium stage), the saturated vapor molecules at 

Tv = 120 K are uniformly arranged. The initial 3 ns allows the system to reach the thermal 

equilibrium state at 120 K, where the Langevin thermostat is used to maintain the temperature 

of both the wall and fluid. In stage 2 (steady-state stage), an external force is applied on each 

fluid molecule in the z-direction. Meanwhile, the thermostat applied on argon is removed and 
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only the NVE ensemble is employed for argon. The temperature control of the solid wall is still 

maintained at 120 K. The following 30 ns guarantees the system to reach a steady state, after 

which another 5 ns is employed to sample the properties, such as velocity and temperature. In 

stage 3 (condensation/cooling stage), the condensation process is triggered by suddenly 

reducing the surface temperature to 90 K and maintained afterwards for a period of 20 ns by 

the Langevin thermostat. To investigate the effects of external force field on condensation over 

surfaces with different free energies, two steps are carried out. In step one, the effect of external 

force field on condensation is primarily investigated with different external force (fe) in the z 

direction from 0.0001ɛσ-1 to 0.0007ɛσ-1 (ɛ and σ employ Ar parameters.) and fixed β equal to 

0.35. In step two, the effect of surface free energy on condensation is investigated with fixed fe 

equal to 0.0005 ɛσ-1 and different β from 0.15 to 0.75. In order to conveniently evaluate the 

external force fields, Tab. 1 gives the exact values in real unit. 
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Figure 1. Schematic of computational model. The size of simulation box is lx × ly × lz = 588.45 × 39.23 × 470.76 

Å. Solid atoms are in blue and fluid molecules are in red.  

Table 1. External forces exerted on each fluid molecular in the present simulations. 

fe / eV·Å-1 0.0001ɛσ-1 0.0002ɛσ-1 0.0003ɛσ-1 0.0004ɛσ-1 0.0005ɛσ-1 0.0006ɛσ-1 0.0007ɛσ-1 

fe / 10-15 N 0.4887 0.9774 1.4661 1.9548 2.4435 2.9322 3.4209 

3. Results and discussion 

3.1. Condensation dynamics 

3.1.1. On surface with fixed wettability under different external force fields 

In stage 2, the vapor molecules reach a steady state under different fe. With fixed surface 

wettability (β = 0.35), the velocity in the z direction (vz) and temperature profiles, shown in 

Fig. 2, are found to be sensitive to fe. When fe increases, velocity gradient along the x direction 

rises, and the apparent slippage appears and increases at the solid-vapor interface. 

Correspondingly, temperature of the vapor increases, which allows the saturated vapor to 

become superheated and the degree of superheat increases. Meanwhile, the temperature jump 

and gradient along the x direction become larger with increasing fe. From the top views, as 

shown in Fig. 3(a), it is indicated that there is no significant difference of first layer of the liquid 

molecules between fe = 0 and fe = 0.0007ɛσ-1 cases. This is also confirmed by the detailed 

quantitative results shown in Fig. 3(b) that the differences of density profiles under different fe 

are generally small. Specifically, it can be seen, from the locally amplified inset in Fig.3(b), 

that the averaged density adjacent to the solid wall decreases from 0.0020 Å-3 to 0.0011 Å-3 

with increasing fe from 0 to 0.0007ɛσ-1 due to the increase of fluid temperature resulted from 

the dissipated heat. 
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Figure 2. Velocity and temperature profiles of vapor molecules with β = 0.35 under different external force on 

stage 2. 

 

Figure 3. (a) Top view of first layer molecules adjacent to the solid wall. (b) Density profiles of vapor molecules 

with β = 0.35 under different external force on Stage 2. 

In stage 3, when the surface temperature suddenly drops from 120 K to 90 K, the vapor 

molecules are immediately cooled by the wall surface. The transient density profiles in the x-

direction under different fe are given in Fig.4. It can be clearly seen that in the cases with fe  ≥ 

0.0005ɛσ-1, the density profiles during stage 3 rarely vary, which suggests that there is no 

surface condensation. This can also be supported by the animation of simulation system (see 

supplementary material at [27] for Figs. S1-S3). For those condensation cases (fe < 0.0005ɛσ-
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1), the condensate on the wall surface growing thicker is clearly indicated by the liquid density 

peaking and expanding as time evolves. Eventually, fe = 0, 0.0001ɛσ-1 and 0.0002ɛσ-1 cases 

shape similarly in the density profile while fe = 0.0003ɛσ-1 and 0.0004ɛσ-1 cases shape another. 

By observing the animation of condensation under different fe (see supplementary material at 

[27] for Figs. S4-S8), it can be found that similar density profiles are due to the same number 

of primary droplets. For fe = 0, 0.0001ɛσ-1 and 0.0002ɛσ-1 cases, finally there are two primary 

droplets during stage 3, while for fe = 0.0003ɛσ-1 and 0.0004ɛσ-1 cases, there is only one. Fig. 5 

shows the transient snapshots (t = 2, 4, 6, 8, 10, 12 and 14 ns) for three representative cases (fe 

= 0, 0.0002ɛσ-1 and 0.0004ɛσ-1). No matter for fe = 0 or other cases, primary droplets form both 

through three over-lapping stages. Initially, obvious clusters are observed to deposit on the wall 

surface. Then, some clusters randomly migrate and coalesce with other clusters to form nuclei 

while the others disappear. Finally, a primary droplet emerges with upsizing by condensation 

of vapor molecules and numerous coalescences between those surviving nuclei. However, there 

are significant differences between these cases. Combining Figs. 4 and 5 together, it is clearly 

found that the existence of fe can postpone the appearance of condensation when fe is beyond 

to a certain threshold (fcr = 0.0005ɛσ-1 for surface with β = 0.35). In the fe = 0 case, obvious 

clusters can be observed at the initial time, while in the fe = 0.0004ɛσ-1 case, they only do after 

4 ns (see Fig. 5). In addition, the densities for fe = 0.0003ɛσ-1 and 0.0004ɛσ-1 cases are apparently 

lower than those for fe = 0, 0.0001ɛσ-1 and 0.0002ɛσ-1 cases, which suggests that the 

condensation intensity decreases with increasing fe. The essential reason is that fe causes the 

dissipated heating effect, which further leads to the locally superheating state of vapor in 

vicinity of the wall surface. Due to the fact, after the surface temperature drops, the superheated 

vapor needs to be cooled to saturation state first before condensing, the strong dissipated 

heating effect greatly prevents the vapor molecules from condensing. The larger fe, the larger 

degree of superheating and harder the condensation could occur. It can also be seen that even 



9 

 

small droplets start to move downward after formation with larger fe, which facilitates the 

coalescence between them and causes less primary droplets to emerge. For example, as shown 

in Fig. 5, three primary droplets can be seen at 10 ns in fe = 0 case while only two form in fe = 

0.0002ɛσ-1 case. 

 

Figure 4. Transient density profiles with β=0.35 and different fe during stage 3. 



10 

 

 
Figure 5. Transient snapshots with β=0.35 and different fe during stage 3. 

3.1.2. On surfaces with different wettabilities under fixed external force field 

In Fig. 6, based on whether there exists the velocity slippage under fe = 0.0005ɛσ-1, velocity 

profiles in the z direction (vz) are shown separately and different variations are observed. When 

β is small (β ≤ 0.45), the velocity slip appears and decreases with increasing β. The variation 

near the main stream is not significant. All these lead to the velocity gradient along the x-

direction increases with increasing β. Correspondingly, the temperature profile drops as a 

whole, whereas the temperature gradient tends to become steeper with increasing β. When β is 

large (β > 0.45), the slippage disappears and the difference in velocity profiles is not 

conspicuous, which results from stronger solid-fluid interaction. Consequently, the increase in 

the fluid temperature is not dramatic and the difference between different β is small when β > 

0.45 compared with small β cases. As for density profiles shown in Fig.7, when β increases, 

suggesting stronger solid-fluid interaction, the density adjacent to solid wall surface increases 
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obviously. It can also be clearly seen from the top view of the first layer of fluid molecules 

adjacent to the solid wall surface, as shown in Fig.7 (b). On surface with β = 0.15, the adsorbed 

fluid molecules are few and isolated to each other, while as β increases to 0.75, the wall surface 

is almost fully occupied by massive fluid molecules. 

 

Figure 6. Velocity and temperature profiles of vapor molecules with different β under fe = 0.0005ɛσ-1 on stage 2. 

 

Figure 7. (a) First layer of molecules adjacent to solid wall (top view). (b) Density profiles of fluid molecules 

with different β under fe = 0.0005ɛσ-1 in stage 2. 

From Fig. 8, it is seen that there are eventually three different kinds of density profiles in stage 

3. When β < 0.45, the density profiles do not increase and vary significantly, which indicates 
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that the condensate bulk hardly forms due to the existence of external force field and weak 

solid-fluid interaction. When β = 0.45, the density increases and the condensate grows thicker 

with time before t = 6 ns. Comparatively, at t = 10 ns, although the condensate becomes thicker 

significantly, the density drops. This can be explained by the transient snapshots of 

condensation shown in Fig. 8. It is seen that the film-like condensate grows continuously 

covering most of the wall surface at the initial time (see Fig. 8 at t = 2 ns). Therefore, the 

density increases and the condensate grows thicker. Then, the film-like condensate starts to 

contract and rupture. After rupturing, obvious discrete droplets appear and start to coalesce. 

Due to the existence of external force, the droplets move downward and coalesces with a 

primary droplet. As the primary droplet forms and grows large enough, the droplet moving 

becomes much faster. The droplet forms an asymmetric cap-like shape, of which the front part 

is denser. Consequently, the density distribution tends to flatten. When β > 0.45, the solid-fluid 

interaction is sufficiently strong so that numerous clusters instantaneously deposit on the wall 

surface when cooled and the surface is fully occupied by fluid molecules immediately. As can 

be seen in Figs. 8 and 9 (t = 2 ns), the condensate film already becomes thick. With time 

evolving, the condensate film continues to grow thicker but the growth rate decreases and tends 

to cease at t = 10 ns. As the condensate film grows thick enough, it starts to move downward 

slowly with noticeable fluctuation at the liquid-vapor interface due to the strong frictional force. 
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Figure 8. Transient density profiles with different β and fe = 0.0005ɛσ-1during stage 3. 

 
Figure 9. Transient snapshots with different β and fe = 0.0005ɛσ-1 during stage 3. 
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3.2. Interfacial heat transfer 

3.2.1. On surface with fixed wettability under different external force fields 

Surface condensation is influenced by solid-fluid interfacial heat transfer. In order to 

understand the effect of external force field on condensation, we measured the interfacial 

thermal resistance (R) between the fluid and wall surface in stage 3. The interfacial thermal 

resistance is determined as R = ΔT/QA, where ΔT is the temperature difference between the 

wall surface and the first layer of fluid molecules adjacent to it; Q is the heat transfer rate, 

calculated as the slope of accumulated energy (E) against time; A is the heat transfer area. From 

Figs. 10 and 11, it is found that if there is no condensation (fe ≥ 0.0005ɛσ-1), the slope of E 

remains unchanged, namely Q keeps constant. Whereas, if condensation occurs (fe < 0.0005ɛσ-

1), Q drops with time, which qualitatively means that the condensation intensity decreases with 

time. Variations of R under different fe are given in Fig. 12, which indicates that R generally 

holds for all cases. It strongly verifies that R is the inherent property for a given couple of solid 

and fluid (liquid or vapor), and independent of the transient heat transfer processes with 

different fe. In other words, once the solid wall and fluid (liquid or vapor) are primarily fixed, 

R is simultaneously determined and fixed regardless of different transient heat transfer rates 

(see fe = 0 ~ 0.0004ɛσ-1 for solid-liquid cases with condensation and fe = 0.0006ɛσ-1 ~ 0.0007ɛσ-

1 for solid-vapor cases without condensation occurring in Fig. 12). On the other hand, also note 

that the solid-liquid and solid-vapor interfacial thermal resistances are significantly different in 

nature, therefore, when there exists liquid-vapor phase-change, e.g. condensation in the present 

work, R no longer holds but changes gradually and correspondingly, e.g. from the high value 

of solid-vapor interfacial thermal resistance to the low value of solid-liquid interfacial thermal 

resistance with notably transitional characteristics in the present work (see fe = 0 ~ 0.0002ɛσ-1 

cases before t = 4 ns, fe = 0.0003ɛσ-1 case before t = 8 ns, fe = 0.0004ɛσ-1 case before t = 10 ns 

and fe  =  0.0005ɛσ-1 case for whole simulation time-span in Fig. 12).  
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In order to further investigate how fe determines the surface condensation, two intentionally-

designed cases of fe = 0.0005ɛσ-1 near-wall (fe is just exerted on fluid molecules on near-wall 

region where the width of x direction is rc, shown in Fig. 1) and fe = 0.0005ɛσ-1 main (fe is 

exerted on every fluid molecule except that situated on near-wall region, namely main-flow 

region) are carried out. Informative and distinct results are acquired that the variations of E, Q 

and R for fe = 0.0005ɛσ-1 near-wall case are completely in accord with fe = 0 case whereas those 

for fe = 0.0005ɛσ-1 main case agree well with fe = 0.0005ɛσ-1 case (see Figs. 10-12). The results 

clearly show that the exertion of external force field on all fluid molecules is equivalent to that 

on the non-near-wall fluid molecules in the mainstream. This means that the external force 

field influences the surface condensation, including the onset and intensity, through the fluid 

bulk rather than the solid-fluid interface. Referring to the concepts in our previous work that 

the influencing factors to micro/nanofluidic phenomena can be categorized as either boundary 

or bulk factors [19], the external force field is clearly a bulk factor, rather than a boundary 

factor, to surface condensation. On the other hand, it is notable that the external force field does 

show indirect influence on the solid-fluid interfacial thermal resistance through direct influence 

on the surface condensation resulting from the generation of dissipated heat.  

 

Figure 10. Time evolution of total heat transfer accumulation on surface with β = 0.35 under different external 

force during stage 3. 



16 

 

 

Figure 11. Time evolution of heat transfer rate on surface with β = 0.35 under different external force during 

stage 3. 

 

Figure 12.  Time evolution of interfacial thermal resistance (R) on a surface with β = 0.35 under different 

external force fields during stage 3. 

3.2.2. On surfaces with different wettabilities under a fixed external force field 

Similarly, the variations of E, Q and R against time with different β and fe = 0.0005ɛσ-1 are 

statistically obtained during stage 3, as shown in Figs. 13-15. We find that Q stays at low value 

(< 7×10-9 W) and almost remains the same in non-condensation (NC) cases (β ≤ 0.35). For 

condensation cases (β > 0.35), Q, which indicates the condensation intensity, increases with 

increasing β at the initial time but deceases with time, as shown in Figs.13-14. Due to the high 

condensation intensity, Q drops more dramatically with increasing β. For the dropwise 

condensation (DWC) case (β = 0.45), the condensation process does not cease during our 

simulation time, whereas, for the filmwise condensation (FWC) cases (β > 0.45), the 

condensation process ceases before t = 14 ns. As for R, it is highly sensitive to β. Generally, R 

decreases with increasing β following a nonlinear law [28]. When β is relatively large, the 
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difference of R between cases with different β is much smaller, as shown in Fig.16. All these 

results strongly suggest that the surface wettability exerts a significant effect on surface 

condensation.  

 

Figure 13. Time evolution of total heat transfer accumulation with different surface wettabilities under fe = 

0.0005ɛσ-1 during stage 3. 

 

Figure 14. Time evolution of heat transfer rate with different surface wettabilities under fe = 0.0005ɛσ-1 during 

stage 3. 

 

Figure 15. Time evolution of interfacial thermal resistance (R) with different surface wettabilities under fe = 

0.0005ɛσ-1 during stage 3. 
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Figure 16. Interfacial thermal resistance (R) against different surface wettabilities under fe = 0.0005ɛσ-1 during 

stage 3. 

3.3. Energy conversion 

To reveal the fundamental mechanism of effect of fe on condensation from an energy point of 

view, energy conversion analysis has been carried out based on energy balance. The internal 

energy (U), microscopically defined as the sum of thermal kinetic energy and potential energy, 

can be employed as the indicator of whether condensation/cooling occurs and how intensive it 

is. Figures 17 and 18 show the time-evolutions of changes in U for different cases during stage 

3. It is seen that for NC cases, U slightly decreases at the initial time, then gradually converges 

to a certain value (marked in Figs. 17 and 18) after about 10 ns. The convergence value 

increases with increasing fe and decreasing β. For condensation cases, U shows dramatic change 

when fe = 0 ~ 0.0004ɛσ-1 and β = 0.45 ~ 0.75. It is also seen that U changes more dramatically 

for FWC compared with DWC cases, which indicates that FWC is more intensive than DWC. 

All FWC cases almost cease after about 10 ns and U converges to a certain value with slight 

difference between different cases. On the contrary, DWC cases apparently last after 10 ns. 

Due to the dissipated heating effect of fe, vapor molecules are superheated, and the degree of 

superheating, as well as the initial values of U before cooling, increases with increasing fe and 

decreasing β. Generally, when the surface is cooled, U decreases correspondingly. Note that 

this is a pure cooling process without condensation. Then, if U stops decreasing and holds 

afterward, no condensation occurs. If U continues to decrease dramatically, condensation 
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occurs. Moreover, the more dramatically U changes, the more intensive the condensation and 

more likely the filmwise condensation. It is clearly shown from Figs. 17 and 18 that both fe and 

β can significantly influence the nano-confined surface condensation. 

 

Figure 17. Time evolution of the internal energy (U) with β = 0.35 under different external forces during stage 3 

 

Figure 18. Time evolution of the internal energy (U) with different surface wettabilities under fe = 0.0005ɛσ-1 

during stage 3. 

For NC cases, U remains steady after 10 ns, suggesting condensation is unlikely to occur. 

Therefore, we carry out energy conversion analysis based on the following equation: 

EQ= ΔU+ΔEK+W                                                                  (2) 

in the time span of t = 0 ~ 10 ns, where ΔU and ΔEK are the changes in internal energy and 

macroscopic kinetic energy; W and EQ are the work done by external force and heat transferred 

from the fluid to the wall. The quantitative results are tabulated in Tabs. 2 and 3. To verify the 

energy balance, EQ and ΔU+ΔEK+W are compared with the relative deviations (RDs). It is 

found that almost all RDs are within ±4%, which guarantees the energy balance in Eq. 2 
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considering the statistical fluctuation. Generally, no matter for the cases with same β and 

different fe or with different β and same fe, the energy conversions obey the unified mechanism.  

Fig. 19 schematically illustrates the energy conversions based on Eq. 2.  

For condensation cases (see fe = 0~0.0003ɛσ-1 in Tab. 2 and β = 0.45~0.75 in Tab. 3), it is found 

that the heat transferred from fluid to solid mainly comes from ΔU (60~100%), releasing latent 

heat through the phase-change process. On the other hand, two other sources contributing to 

EQ are identified to be secondarily W (0~36%) and thirdly ΔEK (0~11%). Note that the case of 

fe = 0.0004ɛσ-1 and β = 0.35 does not fully follow the above regulation (ΔU, W and ΔEK 

respectively contribute 37%, 61% and 2%) due to its transitional condensation state, therefore 

not considered. When condensation occurs, the work done within the bulk fluid (W) completely 

converts into heat and dissipated through the solid wall. Meanwhile, EK decreases due to the 

frictional effect at the solid-liquid interface. The corresponding change in EK (ΔEK) finally 

converts into heat and dissipated through the solid wall. In principle, ΔEK and W, which both 

result from fe, are dissipated by the friction and viscosity, and finally lead to heating effect to 

the fluid as an internal heat source, which can be clearly supported by the fact that when fe is 

removed (fe = 0), both ΔEK and W disappear simultaneously, as seen in Tab. 2. 

However, for non-condensation cases, either very strong viscous and frictional dissipations 

heating effect due to large fe (see fe = 0.0005ɛσ-1 ~ 0.0007ɛσ-1 in Tab. 2) or very large interfacial 

thermal resistance due to small β (see β = 0.15 ~ 0.35 in Tab. 3) keeps the bulk vapor 

temperature higher than the saturation temperature and denies the occurrence of condensation 

though U decreases a little, releasing sensible heat, due to the cooling of vapor molecules by 

the solid wall surface. Meanwhile, W due to fe mostly converts into dissipated heat while 

slightly contributes to the increase in EK. Therefore, it is found that W and ΔU respectively 

contribute firstly (86~94%) and secondly (7~17%) to EQ whereas ΔEK gives negative 

contribution (-1~-3%). 
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Table 2. Energy conversions for cases with β = 0.35 under different external force fields (t = 0 ~ 10 ns). 

fe ΔU ΔEK W ΔU+ΔEK+W EQ RD 

eV·Å-1 eV eV eV eV eV % 

0 -224.2 0.0 0.0 -224.2 -227.5 -1.43 

0.0001ɛσ-1 -222.5 -2.7 -11.9 -237.1 -237.5 -0.19 

0.0002ɛσ-1 -189.8 -9.0 -46.8 -245.6 -249.8 -1.70 

0.0003ɛσ-1 -173.6 -13.6 -104.1 -291.4 -301.1 -3.30 

0.0004ɛσ-1 -111.3 -5.2 -181.4 -297.8 -314.5 -5.45 

0.0005ɛσ-1 -52.9 9.2 -277.5 -321.3 -330.8 -2.94 

0.0006ɛσ-1 -40.3 9.8 -380.9 -411.4 -418.8 -1.80 

0.0007ɛσ-1 -41.7 10.0 -487.9 -519.6 -523.8 -0.80 

 

Table 3. Energy conversions for cases with different surface wettability under fe = 0.0005ɛσ-1 (t = 0 ~ 10 ns). 

β ΔU ΔEK W ΔU+ΔEK+W EQ RD 

- eV eV eV eV eV % 

0.15 -23.7 3.8 -298.9 -318.8 -321.0 -0.68 

0.25 -28.2 6.1 -288.2 -310.3 -313.0 -0.86 

0.35 -52.9 9.2 -277.5 -321.3 -330.8 -2.94 

0.45 -383.5 -66.7 -164.6 -614.8 -613.1 0.27 

0.55 -467.4 -70.5 -103.8 -641.7 -629.5 1.91 

0.65 -449.6 -57.9 -76.7 -584.2 -570.2 2.42 

0.75 -438.3 -51.5 -66.0 -555.8 -542.8 2.37 
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Figure 19. Energy conversion analyses for (a) condensation and (b) no-condensation cases (bold arrows indicate 

primary contributions). 

Based on the above energy conservation analyses, the heat transferred from fluid to solid can 

be divided into two categories. One is the latent and sensible heats originated from the cooling 

and condensation, or pure cooling, of the fluid, which is represented by Qc. The other is the 

dissipated heat generated due to the existence of the external force field, which is represented 

by Qf. The proportional contributions of Qc and Qf in different cases based on fe and β are 

illustrated in Figs. 20 and 21, respectively. It is clearly seen that Qc decreases and Qf increases 

with increasing fe and decreasing β. When fe is small (β = 0.35) or β is large (fe = 0.0005ɛσ-1), 

condensation occurs in either FWC or DWC mode and the heat transferred from fluid to solid 

mainly comes from Qc. When fe increases above a critical value of ca. fcr = 0.0004ɛσ-1 (β = 0.35) 

or β decreases below a critical value of ca. βcr = 0.45 (fcr = 0.0005ɛσ-1), condensation never 

occurs and the heat transferred from fluid to solid wall surface mainly comes from Qf. It has 

been reported that the surface wettability is significant in determining the condensation mode 

and intensity. More importantly, it has not been reported that the existence of the external force 

field can postpone and even suppress the occurrence of condensation. Note that the surface 

wettability is normally regarded as a pretreating factor that cannot be easily and artificially 

changed during operation whereas the external force field is often a process factor that can be 

flexibly controlled in-situ, e.g. electrostatic and magnetic force fields. 
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Figure 20. Different heat generation from 0 to 10 ns on surface with β = 0.35 under different external force. The 

dropwise condensation (DWC) and no-condensation (NC) cases are shown in light yellow and red backgrounds.  

 

Figure 21. Different heat generation from 0 to 10 ns with different surface wettability under fe = 0.0005ɛσ-1. The 

no-condensation (NC), dropwise condensation (DWC) and filmwise condensation (FWC) cases are shown in light 

red, yellow and blue backgrounds.  

4. Conclusions 

In the present work, we investigate the dynamic behaviors of nano-confined surface 

condensation with different β and fe using MD simulations in the views of heat transfer and 

energy conversion. The simulation results show that both the velocity slip and temperature 

jump become larger with increasing fe and decreasing β. Meanwhile, the existence of the 

velocity slip shows significant influence on the increase of fluid temperature. The density 

profiles for different fe vary slightly on stage 2. Contrastively, those for different β show 

obvious difference and the density near the wall surface increases with increasing β. 

Asymmetric droplet is observed due to fe, which promotes the coalescence of droplets after 
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nuclei form. Meanwhile, increasing fe postpones or even suppresses the onset of surface 

condensation when it reaches a certain critical value (fcr = 0.0005ɛσ-1 for surface with β = 0.35).  

Based on the heat transfer analysis, it can be found that fe, as a bulk factor, shows indirect effect 

on R through direct influence on the surface condensation resulting from the generation of 

dissipated heat. In addition, when R increases with decreasing β, the solid-vapor interfacial 

thermal resistance becomes significantly larger than the solid-liquid one. 

Based on the energy balance analysis, for condensation cases, the heat transferred from fluid 

to solid mainly comes from the change in U, while for non-condensation cases, the dissipated 

heats are the major contributions to this heat. In all cases, W mainly converts into dissipated 

heats, only except for the no-condensation case where a small proportion of W converts into 

Ek. We classify the heat transferred from fluid to solid into two categories, namely Qc (due to 

condensation/cooling) and Qf (due to fe). It is found that Qf increases and dominates the total 

heat with increasing fe and decreasing β. It is also found that Qf plays an important role as the 

internal heat source and suppresses the further decrease of U, consequently the condensation 

is weakened or even inhibited.  
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